Differentiate y=ln(2x^2) with respect to x

Making a substitution for u = 2x^2 Now y = ln(u) dy/dx = du/dx * dy/du du/dx = 4x dy/du = 1/u dy/dx = 4x/u Then substitute 2x^2 back in as u The final answer is 4x/(2x^2) Which can be simplified by dividing through by 2 and x to get 2/x

CG
Answered by Catherine G. Maths tutor

5956 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The polynomial f(x) is define by f(x) = 3x^3 + 2x^2 - 8x + 4. Evaluate f(2).


Write 9sin(x) + 12 cos(x) in the form Rsin(x+y) and hence solve 9sin(x) + 12 cos(x) = 3


How would you differentiate f(x)=3x(2x-1)^2


Which value of x gives the greatest value of "-x^2+8x-6"


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning