Differentiate y=ln(2x^2) with respect to x

Making a substitution for u = 2x^2 Now y = ln(u) dy/dx = du/dx * dy/du du/dx = 4x dy/du = 1/u dy/dx = 4x/u Then substitute 2x^2 back in as u The final answer is 4x/(2x^2) Which can be simplified by dividing through by 2 and x to get 2/x

CG
Answered by Catherine G. Maths tutor

5147 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given ∫4x^3+4e^2x+k intergrated between the bounds of 3 and 0 equals 2(46+e^6). Find k.


There is a Ferris wheel where the passengers are placed 10m away from the centre. At what speed must they be moving in order for them to feel completely weightless at the top of the wheel.


show that y = (kx^2-1)/(kx^2+1) has exactly one stationary point when k is non-zero.


What are the different steps involved in Proof by Induction?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences