Differentiate y=ln(2x^2) with respect to x

Making a substitution for u = 2x^2 Now y = ln(u) dy/dx = du/dx * dy/du du/dx = 4x dy/du = 1/u dy/dx = 4x/u Then substitute 2x^2 back in as u The final answer is 4x/(2x^2) Which can be simplified by dividing through by 2 and x to get 2/x

Answered by Catherine G. Maths tutor

4874 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

f(x) = x^3 + 3x^2 + 5. Find (a) f ′′(x), (b) ∫f(x)dx.


The random variable J has a Poisson distribution with mean 4. Find P(J>2)


How would I find a the tangent of a point on a line?


Express the equation cosecθ(3 cos 2θ+7)+11=0 in the form asin^2(θ) + bsin(θ) + c = 0, where a, b and c are constants.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences