When given an equation in parametric form, how can you figure out dy/dx?

Assuming we are given that x = f(t) and y = g(t), we first differentiate x with respect to t to obtain dx/dt. Then, we differentiate y with respect to t to obtain dy/dt. Much like fractions, we can find dt/dx by finding the inverse of dx/dt (by doing 1 divided by dx/dt).

Now that we know how to figure out dy/dt and dx/dt, again similarly to fractions we can multiply these together. Note how the "dt"s cancel out and we are left with dy/dt.

Answered by Dave J. Maths tutor

2799 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Make a the subject of 3(a+4) = ac+5f .


A cubic curve has equation y x3 3x2 1. (i) Use calculus to find the coordinates of the turning points on this curve. Determine the nature of these turning points.


A curve has parametric equations x=t(t-1), y=4t/(1-t). The point S on the curve has parameter t=-1. Show that the tangent to the curve at S has equation x+3y+4=0.


What is a complex number?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences