The curve C has equation x^2 + 2xy + 3y^2 = 4. Find dy/dx.

Here, we have to use implicit differentiation, along with the product rule. Remember that the product rule is (vu)' = vu'+uv'. Moving through the equation we have: x^2+2xy+3y^2 = 4 ==> 2x +2y + 2x*(dy/dx) + 6y*(dy/dx) = 0, remembering the rules of implicit differentiation. Factorising out dy/dx = -(2x+2y)/(2x+6y).

Answered by Chris B. Maths tutor

10555 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How can you find out if two lines expressed in their vector form intersect?


p(x)=2x^3 + 7x^2 + 2x - 3. (a) Use the factor theorem to prove that x + 3 is a factor of p(x). (b) Simplify the expression (2x^3 + 7x^2 + 2x - 3)/(4x^2-1), x!= +- 0.5


In a science experiment a substance is decaying exponentially. Its mass, M grams, at time t minutes is given by M=300e^(-0.05t). Find the time taken for the mass to decrease to half of its original value.


Let R denote the region bounded by the curve y=x^3 and the lines x=0 and x=4. Find the volume generated when R is rotated 360 degrees about the x axis.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences