The curve C has equation x^2 + 2xy + 3y^2 = 4. Find dy/dx.

Here, we have to use implicit differentiation, along with the product rule. Remember that the product rule is (vu)' = vu'+uv'. Moving through the equation we have: x^2+2xy+3y^2 = 4 ==> 2x +2y + 2x*(dy/dx) + 6y*(dy/dx) = 0, remembering the rules of implicit differentiation. Factorising out dy/dx = -(2x+2y)/(2x+6y).

CB
Answered by Chris B. Maths tutor

11472 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What are the parameters of the Poisson distribution?


b) The tangent to C at P meets the coordinate axes at the points Q and R. Show that the area of the triangle OQR, where O is the origin, is 9/(3-e)


How do you integrate a fraction when x is on the numerator and denominator?


Solve algebraically: 2x - 5y = 11, 3x + 2y = 7


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning