The curve C has equation x^2 + 2xy + 3y^2 = 4. Find dy/dx.

Here, we have to use implicit differentiation, along with the product rule. Remember that the product rule is (vu)' = vu'+uv'. Moving through the equation we have: x^2+2xy+3y^2 = 4 ==> 2x +2y + 2x*(dy/dx) + 6y*(dy/dx) = 0, remembering the rules of implicit differentiation. Factorising out dy/dx = -(2x+2y)/(2x+6y).

Answered by Chris B. Maths tutor

9831 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that the equation of the curve y=f(x) passes through the point (-1,0), find f(x) when f'(x)= 12x^2 - 8x +1


Using the result: ∫(2xsin(x)cos(x))dx = -1⁄2[xcos(2x)-1⁄2sin(2x)] calculate ∫sin²(x) dx using integration by parts


Simplify √32 + √18 giving your answer in the form of a√2.


a) i) find dy/dx of y = 3x^4 - 8x^3 - 3 ii) then find d^2y/dx^2 b) verify that x=2 at a stationary point on the curve c c) is this point a minima or a maxima


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences