The curve C has equation x^2 + 2xy + 3y^2 = 4. Find dy/dx.

Here, we have to use implicit differentiation, along with the product rule. Remember that the product rule is (vu)' = vu'+uv'. Moving through the equation we have: x^2+2xy+3y^2 = 4 ==> 2x +2y + 2x*(dy/dx) + 6y*(dy/dx) = 0, remembering the rules of implicit differentiation. Factorising out dy/dx = -(2x+2y)/(2x+6y).

Answered by Chris B. Maths tutor

10282 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

a) Point A(6,7,2) lies on l1. Point B(9,16,5) also lies on l1. Find the distance between these two points. b) l2 lies in the same z plane as l1 and crosses l1 at A and is perpendicular to l1. Express l2 in vector form.


Integrate ln(e^x)


Solve the following equation for k, giving your answers to 4 decimal places where necessary: 3tan(k)-1=sec^2(k)


Given y = 9x + 1/x, find the values of x such that dy/dx=0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences