The curve C has equation x^2 + 2xy + 3y^2 = 4. Find dy/dx.

Here, we have to use implicit differentiation, along with the product rule. Remember that the product rule is (vu)' = vu'+uv'. Moving through the equation we have: x^2+2xy+3y^2 = 4 ==> 2x +2y + 2x*(dy/dx) + 6y*(dy/dx) = 0, remembering the rules of implicit differentiation. Factorising out dy/dx = -(2x+2y)/(2x+6y).

Answered by Chris B. Maths tutor

10689 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the gradient of the curve y = x^2(ln(x)) at x = e


Differentiate y= 8x^2 +4x +5


A curve has parametric equations x = 2 sin θ, y = cos 2θ. Find y in terms of x


What does differentiation actually mean?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences