Find the stationary points of the curve given by the following function: f(x) = x^2 + 5x + 2

Differentiate the curve to get the gradient function: f'(x)= 2x + 5. Solve for x when f'(x) = 0 --> 2x + 5 = 0, 2x = -5, x = -5/2 Substitute into the original equation to find y: (-2.5)^2 + 5 * -2.5 + 2 = 6.25 - 12.5 + 2 = -4.25

TD
Answered by Tutor49585 D. Maths tutor

4298 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation y = x^3 - 6x^2 - 15x. The curve has a stationary point M where x = -1. Find the x-coordinate of the other stationary point on the curve.


Find the turning point of the function y=f(x)=x^2+4x+4 and state wether it is a minimum or maximum value.


Given that: y = 5x^3 + 7x + 3. What is dy/dx? What is d^2y/dx^2?


Solve the simultaneous equations - x+y=2 and 4y^2 - x^2 = 11


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning