Find the stationary points of the curve given by the following function: f(x) = x^2 + 5x + 2

Differentiate the curve to get the gradient function: f'(x)= 2x + 5. Solve for x when f'(x) = 0 --> 2x + 5 = 0, 2x = -5, x = -5/2 Substitute into the original equation to find y: (-2.5)^2 + 5 * -2.5 + 2 = 6.25 - 12.5 + 2 = -4.25

Answered by Tutor49585 D. Maths tutor

3739 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the normal line at the point H, where θ= π/6, on the curve with equations x=3sinθ and y=5cosθ


Calculate the volume of revolution generated by the function, f(x) = (3^x)√x, for the domain x = [0, 1]


Solve 2sin2θ = 1 + cos2θ for 0° ≤ θ ≤ 180°


Find the exact value of x from the equation 3^x * e^4x = e^7


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences