Given that y = sin(2x)(4x+1)^3, find dy/dx

The product rule states that (uv)' = u'v + uv' Therefore we know that to find dy/dx we must have (sin(2x))'(4x+1)^3 +sin(2x)((4x+1)^3)' We can differentiate sin(2x) to 2cos(2x) and using the chain rule we can differentiate (4x+1)^3 to 12(4x+1)^2 Therefore our answer is 12sin(2x)(4x+1)^2 + 2cos(2x)(4x+1)^3

Answered by Myles M. Maths tutor

3716 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Make a the subject of 3(a+4) = ac+5f .


Solve |3x+1| = 1


The quadratic equation 2x^2 + 8x + 1 = 0 has roots x1 and x2. Write down the value of x1+x2 and x1*x2 and find the value of x1^2 + x2^2


Find an expression in terms of powers of cos(x) for cos(5x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences