Given that y = sin(2x)(4x+1)^3, find dy/dx

The product rule states that (uv)' = u'v + uv' Therefore we know that to find dy/dx we must have (sin(2x))'(4x+1)^3 +sin(2x)((4x+1)^3)' We can differentiate sin(2x) to 2cos(2x) and using the chain rule we can differentiate (4x+1)^3 to 12(4x+1)^2 Therefore our answer is 12sin(2x)(4x+1)^2 + 2cos(2x)(4x+1)^3

MM
Answered by Myles M. Maths tutor

4446 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How to find the equation of a tangent to a curve at a specific point.


R=1000e^-ct , it takes 5730 years for half of the substance to decay a. find the number of atoms at the start of the decay. b. calculate the number of atoms left when t=22920. c. sketch the function.


Solve 4cos(2x )+ 2sin(2x) = 1 given -90° < x < 90°. Write 4cos(2x )+ 2sin(2x) in the form Rcos(2x - a), where R and a are constants.


The function f(x)=x^2 -2x -24x^(1/2) has one stationary point. Find the value of x when f(x) is stationary, and hence determine the nature of this stationary point.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning