Given that y = sin(2x)(4x+1)^3, find dy/dx

The product rule states that (uv)' = u'v + uv' Therefore we know that to find dy/dx we must have (sin(2x))'(4x+1)^3 +sin(2x)((4x+1)^3)' We can differentiate sin(2x) to 2cos(2x) and using the chain rule we can differentiate (4x+1)^3 to 12(4x+1)^2 Therefore our answer is 12sin(2x)(4x+1)^2 + 2cos(2x)(4x+1)^3

Answered by Myles M. Maths tutor

3893 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find dy/dx of the equation (x^3)*(y)+7x = y^3 + (2x)^2 +1 at point (1,1)


Express √75 in the form of n√3 , where n is an integer. Using this information, solve the following equation: x√48 = √75 + 3√3 (4 marks)


Calculate the volume obtained when rotating the curve y=x^2 360 degrees around the x axis for 0<x<2


Find the equation of the tangent for x = 2cos (2y +pi)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences