A 100g mass is on a circular turntable spinning at 78 revolutions per minute. The maximum frictional force between the mass and turntable is 0.50N. Find the maximum distance from the center of the turntable at which the mass would stay on the turntable.

First, draw a diagram as it makes the problem easier to understand. Show the turntable and mass. Label the distance between the mass and the centre of the turntable r as it is a radius. write down all variables converting to SI units as it makes it simpler later on, the 100g to 0.1kg, and the 78 rev/min radians/s with this calculation w (angular velocity) = 2xPixfrequency = 2xPix(78/60) = 8.17rad/s. Then equate forces, as because the mass isn't slipping on the disk and is moving at a constant angular velocity they must be balanced. (can draw a 2nd diagram) equate the frictional force to the centripetal force F(friction) = mw^2r. looking up equations on formula sheet if you don't know them. rearrange and substitute in the values giving r = 0.5/(0.1 x 8.17^2) = 7.494x10^(-2) = 7.5x10^(-2) to 2 s.f as values in the question are given to 2s.f ie: 78, 0.50

Answered by Amy C. Physics tutor

5101 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Describe, using words, an equation, *and* a graph for each, the following gas laws: (i) Boyle's Law (ii) Charles' Law (iii) The Pressure Law


Given that z = 6 is a root of the cubic equation z^3 − 10z^2 + 37z + p = 0, find the value of p and the other roots.


Give an example of 3 different types of radiation stating their make up, penetration and ionising effect.


A bullet is fired horizontally from a gun at a height of 1.5m at 280m/s. Calculate the time taken for it to hit the ground. A second bullet is fired from an adjacent gun at 370m/s. Calculate the distance it travel before the first bullet hits the ground.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences