Using the Trapezium rule with four ordinates (three strips), estimate to 4 significant figures the integral from 1 to 4 of (x^3+12)/4sqrt(x). Calculate the exact value of this integral, comparing it with your estimate. How could the estimate be improved?

Taking the value at the ordinates f(1) = 13/4, f(2) = 20/4sqrt(2), f(3) = 39/4sqrt(3), f(4) = 9.5 Then the trapezium rule states the integral is approximately 1/2 * [f(1) + 2f(2) + 2f(3) + f(4)], which (using a calculator) is 15.54 to 4 significant figures

(x^3+12)/4sqrt(x) = (1/4)x^(5/2) + 3x^(-1/2) Therefore the antiderivative F(x) = (1/14)x^(7/2) + 6x^(1/2) (as 1/14 = ((1/4)/(5/2 + 1)), 3 = (6/(-1/2 + 1))) And the exact value of the integral is F(4)-F(1) = 211/14 Using a calculator, the difference (211/14)-15.54 = -0.47 (to 2.s.f) This is rather inaccurate, estimate can be improved by using more ordinates.

RM
Answered by Robert M. Maths tutor

7465 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the gradient of the tangent to the curve y=4x^2 - 7x at x = 2


integrate xsin(x)


y=20x-x^2-2x^3. Curve has a stationary point at the point M where x=-2. Find the x coordinate of the other stationary point of the curve and the value of the second derivative of both of these point, hence determining their nature.


How do you find the equation of a line at a given point that is tangent to a circle?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences