Solve the following definite integral: f(x)=3e^(2x+1) for the limits a=0 and b=1, leaving your answer in exact form.

First set up integral. Do not forget dx!

Int(f(x)) between 0 and 1

Optionally take out factor of 3 to simplify problem.

Solve using substitution and the exponential rule.

Integrated function should be (3/2)e^(2x+1).

Between limits this gives (3/2)*(e^(3)-e^(1)).

Answered by Fraser B. Maths tutor

3723 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the first 4 term of the binomial expansion (2-4x)^5


Find the turning point of y = x + 1 + 4/x2 and describe the nature of the turning point


Use the substitution u = cos 2x to find ∫(cos^2*(2x) *sin3 (2x)) dx


The volume of liquid in a container is given by v=(3h^2+4)^(3/2)-8, find dV/dh when h = 0.6


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences