Solve the following definite integral: f(x)=3e^(2x+1) for the limits a=0 and b=1, leaving your answer in exact form.

First set up integral. Do not forget dx!

Int(f(x)) between 0 and 1

Optionally take out factor of 3 to simplify problem.

Solve using substitution and the exponential rule.

Integrated function should be (3/2)e^(2x+1).

Between limits this gives (3/2)*(e^(3)-e^(1)).

FB
Answered by Fraser B. Maths tutor

4330 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given two functions x = at^3 and y = 4a, find dy/dx


Why is the derivative of x^2 equal to 2x?


The line L1 has vector equation,  L1 = (  6, 1 ,-1  ) + λ ( 2, 1, 0). The line L2 passes through the points (2, 3, −1) and (4, −1, 1). i) find vector equation of L2 ii)show L2 and L1 are perpendicular.


A is a function of P . It is known that A is the sum of two parts, one part varies as P and the other part varies as the square of P . When P = 24 , A = 36 and when P = 18 , A = 9. Express A in terms of P .


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning