Solve (z-i)+(z+i)+(z-1)+(z-1)

Since we are dealing with complex numbers and taking its modulus, we can rewrite (z-i)=((-1)(i-z))=(i-z) doing the same for (z-1)=(1-z) we get (i-z)+(z+i)+(1-z)+(z-1)=(i+i+z-z+1+1+z-z) =(2i+2)=4 as we are taking its modulus.

YZ
Answered by Yubo Z. Further Mathematics tutor

3944 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

find an expression for the sum of the series of 1 + 1/2cosx + 1/4cos2x +1/8cos3x + ......


Solve for z in the equation sin(z) = 2


Find the eigenvalues and corresponding eigenvectors of the following matrix: A = [[6, -3], [4, -1]]. Hence represent the matrix in diagonal form.


Prove by induction that the sum from r=1 to n of (2r-1) is equal to n^2.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning