Solve (z-i)+(z+i)+(z-1)+(z-1)

Since we are dealing with complex numbers and taking its modulus, we can rewrite (z-i)=((-1)(i-z))=(i-z) doing the same for (z-1)=(1-z) we get (i-z)+(z+i)+(1-z)+(z-1)=(i+i+z-z+1+1+z-z) =(2i+2)=4 as we are taking its modulus.

YZ
Answered by Yubo Z. Further Mathematics tutor

3182 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the set of values of x for which (x+4) > 2/(x+3)


Solve the equation 3sinh(2x) = 13 - 3e^(2x), answering in the form 0.5ln(k). where k is an integer


Differentiate arcsin(2x) using the fact that 2x=sin(y)


Prove that ∑(1/(r^2 -1)) from r=2 to r=n is equal to (3n^2-n-2)/(4n(n+1)) for all natural numbers n>=2.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences