Solve (z-i)+(z+i)+(z-1)+(z-1)

Since we are dealing with complex numbers and taking its modulus, we can rewrite (z-i)=((-1)(i-z))=(i-z) doing the same for (z-1)=(1-z) we get (i-z)+(z+i)+(1-z)+(z-1)=(i+i+z-z+1+1+z-z) =(2i+2)=4 as we are taking its modulus.

Related Further Mathematics A Level answers

All answers ▸

Find the general solution to the differential equation y'' + 4y' + 3y = 6e^(2x) [where y' is dy/dx and y'' is d^2 y/ dx^2]


Find the eigenvalues and eigenvectors of the following 3x3 matrix (reading left to right, top to bottom): (1 0 2 3 1 1 2 0 1)


Find the set of values for which: 3/(x+3) >(x-4)/x


Solve the equation 2(Sinhx)^2 -5Coshx=5, giving your answer in terms of natural logarithm in simplest form


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences