A curve C has the equation x^3 + 6xy + y^2 = 0. Find dy/dx in terms of x and y.

By differentiating with respect to x, 3x^2+6x(dy/dx)+6y+2y(dy/dx)=0 So, dy/dx(6x+2y)=-3x^2-6y so dy/dx = -(3x^2+6y)/(2(3x+y))

MH
Answered by Mike H. Maths tutor

3650 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate the function y = 2x^2 + 3x + 8 with respect to x.


Differentiate y=ln(2x^2) with respect to x


Factorise the following: 5a^3b^5-4ab^2


What is the tangent line to the curve y = x^3+4x+5 at the point where x = 2?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences