A curve C has the equation x^3 + 6xy + y^2 = 0. Find dy/dx in terms of x and y.

By differentiating with respect to x, 3x^2+6x(dy/dx)+6y+2y(dy/dx)=0 So, dy/dx(6x+2y)=-3x^2-6y so dy/dx = -(3x^2+6y)/(2(3x+y))

MH
Answered by Mike H. Maths tutor

3967 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Separate (9x^2 + 8x + 10)/(x^2 + 1)(x + 2) into partial fractions.


Find the first three terms of the binomial expansion of (3 + 6x)^(1/2).


Given df/dx=2x+3 and the graph goes through (1,1), what is the function f?


The circle (x-3)^2 +(x-2)^2 = 20 has centre C. Write down the radius of the circle and the coordinates of C.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning