A curve C has the equation x^3 + 6xy + y^2 = 0. Find dy/dx in terms of x and y.

By differentiating with respect to x, 3x^2+6x(dy/dx)+6y+2y(dy/dx)=0 So, dy/dx(6x+2y)=-3x^2-6y so dy/dx = -(3x^2+6y)/(2(3x+y))

Answered by Mike H. Maths tutor

3534 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A spherical balloon of radius r cm has volume Vcm^3 , where V =4/3 * pi * r^3. The balloon is inflated at a constant rate of 10 cm^3 s^-1 . Find the rate of increase of r when r = 8.


Differentiate x^5 + 3x^2 - 17 with respect to x


Determine the tangent to the curve y = sin^2(x)/x at the point, x = pi/2. Leave your answer in the form ax+by+c=0


How would I solve the equation 25^x = 5^(4x+1)?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences