A curve C has the equation x^3 + 6xy + y^2 = 0. Find dy/dx in terms of x and y.

By differentiating with respect to x, 3x^2+6x(dy/dx)+6y+2y(dy/dx)=0 So, dy/dx(6x+2y)=-3x^2-6y so dy/dx = -(3x^2+6y)/(2(3x+y))

Answered by Mike H. Maths tutor

3179 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y=x/(2x+5) find dy/dx.


Differentiate Sin^2(X) with respect to X


The points A and B have coordinates (2,4,1) and (3,2,-1) respectively. The point C is such that OC = 2OB, where O is the origin. Find the distance between A and C.


How do you integrate ?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences