A curve C has the equation x^3 + 6xy + y^2 = 0. Find dy/dx in terms of x and y.

By differentiating with respect to x, 3x^2+6x(dy/dx)+6y+2y(dy/dx)=0 So, dy/dx(6x+2y)=-3x^2-6y so dy/dx = -(3x^2+6y)/(2(3x+y))

MH
Answered by Mike H. Maths tutor

3542 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Can you explain the product rule when differentiating?


A curve has the equation 6x^(3/2) + 5y^2 = 2 (a) By differentiating implicitly, find dy/dx in terms of x and y. (b) Hence, find the gradient of the curve at the point (4, 3).


Show that the equation 2sin^2(x) + 3sin(x) = 2cos(2x) + 3 can be written as 6sin^2(x)+3sin(x) - 5 = 0. Hence solve for 0 < x < 360 degrees. Giving your answers to 1.d.p.


What is the chain rule?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences