Given that y = 5x^(3) + 7x + 3, find dy/dx

(i): 15x^(2)+7 --- in order to arrive at this answer, we can divide the equation into 3 separate parts: 5x^(3) and 7x and 3. For the first part, you would multiply the first number, 5 by the power, in this case, 3, leaving us with 15. Then, you have to decrease the power by 2, leaving us with 15x^(2).

For the second part, the power is actually 1, so 7x^(1). The same process is used, multiply 7 by 1, leaving us with 7. Decrease the power by 1, leaving us with 0. Anything multiplied to the power of 0, is 1. 7x1=7.

Answered by Angela P. Maths tutor

6896 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate, by parts, y=xln(x),


Express 6cos(2x)+sin(x) in terms of sin(x). Hence solve the equation 6cos(2x) + sin(x) = 0, for 0° <= x <= 360°.


Express square root of 48 in the form n x square root of 3 , where n is an integer


find the derivative of the following equation: a) y = 5x^3 - 4x^-4 + xb


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences