Given that y = 5x^(3) + 7x + 3, find dy/dx

(i): 15x^(2)+7 --- in order to arrive at this answer, we can divide the equation into 3 separate parts: 5x^(3) and 7x and 3. For the first part, you would multiply the first number, 5 by the power, in this case, 3, leaving us with 15. Then, you have to decrease the power by 2, leaving us with 15x^(2).

For the second part, the power is actually 1, so 7x^(1). The same process is used, multiply 7 by 1, leaving us with 7. Decrease the power by 1, leaving us with 0. Anything multiplied to the power of 0, is 1. 7x1=7.

Answered by Angela P. Maths tutor

6606 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve 2^(3x-1) = 3


Why is the derivative of x^2 equal to 2x?


A curve has the equation (x+y)^2 = xy^2. Find the gradient of the curve at the point where x=1


Using the substitution u = 2 + √(2x + 1), or other suitable substitutions, find the exact value of 4 0 1 ∫ 2 (2 1) +√ +x dx giving your answer in the form A + 2ln B, where A is an integer and B is a positive constant


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences