Find the turning point of the line y = -2x^2 +5x -9

The first step in finding any turning point is to differentiate. To do this, we muiltiply x by its power and drop the power by 1. so in this senario we multiply the -2x by 2 giving us -4x and the power becomes 1, we then multiply the 5x by 1 and the power becomes 0, x^0=1 so we can simply write 5. lastly we can disregard the constant as it has no x value. So we then have the equation, Dy/dx= -4x +5. At a turning point, the gradiant = 0, which means we can set the differentiated equation equal to 0 to find the x-value of the turning point. 0= -4x + 5, if we -5 from both sides we have -5= -4x, then devide both sides by -4 to give you x= -5/-4, this is the x value of the turning point. The last step is to plug the x value into the original value to find the y-value of the turning point y = -2(-5/-4)^2 + 5(-5/-4) - 9, if you put this into your calculator you get the y-value = -47/8. so the turning point has co-ordinates (-5/-4, -47/8)

FB
Answered by Felix B. Maths tutor

4337 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y = 3x(^2) + 6x(^1/3) + (2x(^3) - 7)/(3(sqrt(x))) when x > 0 find dy/dx


Solve the simultaneous equations: y+4x+1=0 and y^2+5x^2+2x=0


A stone, of mass m , falls vertically downwards under gravity through still water. The initial speed of the stone is u . Find an expression for v at time t .


Find values of x in the interval 0<x<360 degrees. For which 5sin^2(x) + 5 sin(x) +4 cos^2(x)=0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning