Find the turning point of the line y = -2x^2 +5x -9

The first step in finding any turning point is to differentiate. To do this, we muiltiply x by its power and drop the power by 1. so in this senario we multiply the -2x by 2 giving us -4x and the power becomes 1, we then multiply the 5x by 1 and the power becomes 0, x^0=1 so we can simply write 5. lastly we can disregard the constant as it has no x value. So we then have the equation, Dy/dx= -4x +5. At a turning point, the gradiant = 0, which means we can set the differentiated equation equal to 0 to find the x-value of the turning point. 0= -4x + 5, if we -5 from both sides we have -5= -4x, then devide both sides by -4 to give you x= -5/-4, this is the x value of the turning point. The last step is to plug the x value into the original value to find the y-value of the turning point y = -2(-5/-4)^2 + 5(-5/-4) - 9, if you put this into your calculator you get the y-value = -47/8. so the turning point has co-ordinates (-5/-4, -47/8)

Answered by Felix B. Maths tutor

3632 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve |3x+1| = 1


Find the gradient of y=6x^3+2x^2 at (1,1)


Given that: y = 3x^2 + 6x^1/3 + (2x^3 - 7)/(3x^1/2), x > 0 Find dy/dx, give each term in its simplest form


a) Point A(6,7,2) lies on l1. Point B(9,16,5) also lies on l1. Find the distance between these two points. b) l2 lies in the same z plane as l1 and crosses l1 at A and is perpendicular to l1. Express l2 in vector form.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences