Find the integral I of e^(2x)*cos*(x), with respect to x

Because we have a product of two functions of x, our first instinct is to apply integration by parts. Let u = e^(2x) and v' = cos(x). We then integrate v' to find v = sin(x) and differentiate u to find u' = 2e^(2x). Applying the by parts rule I = uv - (the integral of)(vu') we get I = e^(2x)sin(x) - 2(the integral of)(e^(2x)*sin(x)). The integral on the RHS is similar to the one we started with, so apply integration by parts again, this time with u = e^(2x), v' = sin(x), u' = 2e^(2x), v = -cos(x). This gives us I = e^(2x)sin(x) + 2e^(2x) - 4(the integral of)(e^(2x)cos(x)). The integral on the RHS is what we started with, so we substitute I in for it, getting I = e^(2x)sin(x) + 2e^(2x) - 4I. Rearranging and solving for I gives us I = e^(2x)(1/5)(sin(x) + 2cos(x)).

Answered by Thomas P. Maths tutor

11605 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How would I go about drawing the graph of f(x) = sin(x)/(e^x) for -π≤x≤2π?


A curve C has the following equation: x^3 + 3y - 4(x^3)*(y^3) a) Show that (1,1) lies on C b) Find dy/dx


What is the velocity of the line from vector A(3i+2j+5k) to vector B(10i-3j+2k)?


Differentiate the function y=(6x-1)^7


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences