Find the integral I of e^(2x)*cos*(x), with respect to x

Because we have a product of two functions of x, our first instinct is to apply integration by parts. Let u = e^(2x) and v' = cos(x). We then integrate v' to find v = sin(x) and differentiate u to find u' = 2e^(2x). Applying the by parts rule I = uv - (the integral of)(vu') we get I = e^(2x)sin(x) - 2(the integral of)(e^(2x)*sin(x)). The integral on the RHS is similar to the one we started with, so apply integration by parts again, this time with u = e^(2x), v' = sin(x), u' = 2e^(2x), v = -cos(x). This gives us I = e^(2x)sin(x) + 2e^(2x) - 4(the integral of)(e^(2x)cos(x)). The integral on the RHS is what we started with, so we substitute I in for it, getting I = e^(2x)sin(x) + 2e^(2x) - 4I. Rearranging and solving for I gives us I = e^(2x)(1/5)(sin(x) + 2cos(x)).

Answered by Thomas P. Maths tutor

12454 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is a complex number?


p(x)=2x^3 + 7x^2 + 2x - 3. (a) Use the factor theorem to prove that x + 3 is a factor of p(x). (b) Simplify the expression (2x^3 + 7x^2 + 2x - 3)/(4x^2-1), x!= +- 0.5


The function f (x) is defined by f (x) = (1-x)/(1+x), x not equal to -1. Show that f(f (x)) = x. Hence write down f ^-1 (x).


How do I remember the trigonometry identities from C3 in the exam?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences