Integrate a^x with respect to x

This comes up in C4 in A level maths and differentiating it could come up in C3. You can write a^x as exp(ln(a^x))=exp(xln(a)) then differentiating this, you get ln(a)exp(xln(a))=ln(a)a^x. By differentiating you can recognise the integral will be (a^x)/ln(a) +c or you can perform a u substitution where u=a^x then du=ln(a)a^xdx. dx=1/ln(a) * 1/u * du. Therefore the integral is now u/(u*ln(a)) du = 1/ln(a) du = u/ln(a) +c = a^x/ln(a) +c.

I have picked this since it could come up in C3 and C4 and I have had the same question asked to me by my peers before. The working can be further expanded by explaining how a^x can be written in terms of e and the natural logarithm, with these being inverse functions of each other, a topic within C3.

Answered by John W. Maths tutor

28430 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

In what useful ways can you rearrange a quadratic equation?


Find X log(x)=4 Base 10


How do you intergrate ln(x)?


Can you teach me how to rationalise the denominator of an algebraic expression?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences