Line AB has equation 4x+5y+2=0. If the point P=(p, p+5) lies on AB, find P . The point A has coordinates (1, 2). The point C(5, k) is such that AC is perpendicular to AB. Find the value of k.

i) Well, if point P lies in AB, then the value of its x and y coordinates have to fulfill the condition imposed by equation AB. Therefore, substituting the x value p for x and the y value p+5 for y:

4(p)+5(p+5)+2=0    Solving for p    p=-3    therefore     P=(-3,2)

ii) AC is perpendicular to AB. We know that if two lines are perpendicular the dot product between their respective direction vectors must be equal to 0. Therefore we start by calculating AC and AB:

AC=OC-OA=(5-1,k-2)=(4,k-2)

As for AB we know that the general equation of a 2D line is Ax+By+C=0, it direction vector being d=(-B,A). Hence, if AB is 4x+5y+2=0; AB=(-5,4).

Doing the dot product:

ACAB=4(-5)+(k-2)*4=0      solving for k   k=7   and therefore C=(5,7)

Answered by Javier L. Maths tutor

4348 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the partial fraction decomposition of the expression: (4x^2 + x -64)/((x+2)(x-3)(x-4)).


State the interval for which sin x is a decreasing function for 0⁰ ≤ x ≤ 360⁰.


A ball is projected vertically upwards from the ground with speed 21 ms^–1. The ball moves freely under gravity once projected. What is the greatest height reached by the ball?


Differentiate the function f(x) = 2x^3 + (cos(x))^2 + e^x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences