Line AB has equation 4x+5y+2=0. If the point P=(p, p+5) lies on AB, find P . The point A has coordinates (1, 2). The point C(5, k) is such that AC is perpendicular to AB. Find the value of k.

i) Well, if point P lies in AB, then the value of its x and y coordinates have to fulfill the condition imposed by equation AB. Therefore, substituting the x value p for x and the y value p+5 for y:

4(p)+5(p+5)+2=0    Solving for p    p=-3    therefore     P=(-3,2)

ii) AC is perpendicular to AB. We know that if two lines are perpendicular the dot product between their respective direction vectors must be equal to 0. Therefore we start by calculating AC and AB:

AC=OC-OA=(5-1,k-2)=(4,k-2)

As for AB we know that the general equation of a 2D line is Ax+By+C=0, it direction vector being d=(-B,A). Hence, if AB is 4x+5y+2=0; AB=(-5,4).

Doing the dot product:

ACAB=4(-5)+(k-2)*4=0      solving for k   k=7   and therefore C=(5,7)

Answered by Javier L. Maths tutor

4408 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate, with respect to x, e^3x + ln 2x,


Susan is researching the population growth of a city. She proposes that x, the number of people in the city, t years after 2017 is given by x=250,000e^(0.012t) A.population in 2017 B.population in 2020 C.During which year would the population have doubled


integrate cos^2(2x)sin^3(2x) dx


Mechanics 1: How do you calculate the magnitude of impulse exerted on a particle during a collision of two particles, given their masses and velocities.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences