Answers>Maths>IB>Article

How do I integrate the volume of revolution between 0 and pi of y=sin(x)?

To integrate the volume of revolution first imagine a thin disk around the x-axis which we want to know the volume of: Volume=area x height. The area of a circle is given by pi r^2 and in our case let us use the height of dx. Hence the volume= pi  r2  dx. Now we will use the radius at each point as the y-value at that point, hence volume = pi y^2 dx = pi sin^2(x) dx. We will integrate this between the limits using the identity sin^2(x)=1/2 (1 - cos(2x)). Hence the volume of integration is given by V=pi/2 integral{0->pi} (1-cos(2x))dx = pi/2*[x -1/2 sin (2x)]{x=0 -> pi} = pi/2*(pi - 0 - (0-0)) = pi^2/2

LC
Answered by Luke C. Maths tutor

3997 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

What is the limit for this function as x approaches 0? y(x)=(cos x)^(1/sin x)


Let f (x) = sin(x-1) , 0 ≤ x ≤ 2 π + 1 , Find the volume of the solid formed when the region bounded by y =ƒ( x) , and the lines x = 0 , y = 0 and y = 1 is rotated by 2π about the y-axis.


dy/dx = 10exp(2x) - 4; when x = 0, y = 6. Find the value of y when x = 2.


Let (x + 3) be a factor of the polynomial P(x) = x^3 + ax^2 - 7x + 6. Find a and the other two factors.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning