How do you calculate the sine, cosine and tangent values for 45 degrees without a calculator?

To find the values for 45 degrees, we construct a right angled isosceles triangle, which has two sides of equal length. We can say that these sides are 1 unit long, and so we can figure out the value of the hypotenuse of this triangle using Pythagoras' theorem. Once we have figured out that the hypotenuse is sqrt(2), we can then figure out the sine, cosine and tangent values using what we know about SOHCAHTOA. To find sine, we divide the opposite side to the 45 degreee angle, which has a length of 1 unit by the hypotenuse which has a value of sqrt(2) to find that sin(45) is equal to 1/sqrt(2) (which we are able to rationalise to sqrt(2)/2 ). Since this triangle is an isosceles, we know that the opposite and adjacent sides are of equal length, and so we can see the cos(45) is also equal to 1/sqrt(2). In order to find out the tangent value of 45 degrees, we need to divide the opposite side to the angle by the adjacent side. Since both the opposite and adjacent sides of this triangle are the same, we can see that tan(45) is equal to 1.

Answered by Heather C. Maths tutor

18918 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do I approach simultaneous equations with 2 unknowns?


How do you factorise x^2 +5x+6?


Find the value of x: 2x^2 - 3x - 4 = 1


Daniel bakes 420 cakes. He bakes only vanilla cakes, banana cakes, lemon cakes and chocolate cakes. 72 of the cakes are vanilla cakes. 35% of the cakes are banana cakes. The ratio of the number of lemon cakes to the number of chocolate cakes is 4:5 Work


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences