Show that Sec2A - Tan2A = (CosA-SinA)/(CosA+SinA)

Sec2A - Tan2A Definition of Sec and Tan = 1/Cos2A - Sin2A/Cos2A Combining Fractions = (1 - Sin2A) / (Cos2A) Apply Double Angle Formula = (1 - 2SinACosA) / (Cos2A - Sin2A) Make use of 1 = Cos2x + Sin2x and Difference of two squares = (Cos2A + Sin2A - 2SinACosA) / (CosA + SinA)(CosA - SinA) Factorise the numerator = (CosA - SinA)2 / (CosA + SinA)(CosA - SinA) Divide out by (CosA - SinA) = (CosA - SinA) / (CosA + SinA)

Answered by James C. Maths tutor

34542 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express 4sinx + 3cosx in the form Rcos(x-a)


find dy/dx of x^1/2 + 4/(x^1/2) + 4


Find partial fractions of : (x+7) / ((x-3)(x+1)^2)


The equation of a line is y=3x – x^3 a) Find the coordinates of the stationary points in this curve, stating whether they are maximum or minimum points b) Find the gradient of a tangent to that curve at the point (2,4)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences