If given two parametric equations for a curve, how would you work out an equation for the gradient?

Parametric equations will have both the x and the y coordinates expressed in terms of another paramater, usually t. Gradients of curves are expressed in the form of an equation of dy/dx, in order to work out the gradient from parametric equations, first the student should differentiate the x equation, giving dx/dt. Then differentiate the y equation, giving dy/dt.

To work out dy/dx, from these, it is necessary to multiply the differential of y (dy/dt) by the inverse of the differential of x (dt/dx) so the dt in both equations cancels out and we are left with only x and y. The resulting dy/dx equation is the equation for the gradient of the curve. 

Answered by Mollie W. Maths tutor

3823 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has equation y = 2x^2 - 12x + 16 Find the gradient of the curve at the point P (5, 6).


Integrate ln(x) by parts then differentiate to prove the result is correct


The curve C has equation y = 3x^4 – 8x^3 – 3 Find (i) dy/dx (ii) the co-ordinates of the stationary point(s)


Using the limit definition of the derivative, find the derivative of f(x)=sin(3x) at x=2π


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences