If given two parametric equations for a curve, how would you work out an equation for the gradient?

Parametric equations will have both the x and the y coordinates expressed in terms of another paramater, usually t. Gradients of curves are expressed in the form of an equation of dy/dx, in order to work out the gradient from parametric equations, first the student should differentiate the x equation, giving dx/dt. Then differentiate the y equation, giving dy/dt.

To work out dy/dx, from these, it is necessary to multiply the differential of y (dy/dt) by the inverse of the differential of x (dt/dx) so the dt in both equations cancels out and we are left with only x and y. The resulting dy/dx equation is the equation for the gradient of the curve. 

MW
Answered by Mollie W. Maths tutor

4018 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate (lnx)/x^2 dx between limits 1 and 5


What are the rules for decomposition of partial fractions?


Given f(x) = (x^4 - 1) / (x^4 + 1), use the quotient rule to show that f'(x) = nx^3 / (x^4 + 1)^2 where n is an integer to be determined.


Given y=2x(x^2-1)^5, show that dy/dx = g(x)(x^2-1)^4 where g(x) is a function to be determined.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences