If given two parametric equations for a curve, how would you work out an equation for the gradient?

Parametric equations will have both the x and the y coordinates expressed in terms of another paramater, usually t. Gradients of curves are expressed in the form of an equation of dy/dx, in order to work out the gradient from parametric equations, first the student should differentiate the x equation, giving dx/dt. Then differentiate the y equation, giving dy/dt.

To work out dy/dx, from these, it is necessary to multiply the differential of y (dy/dt) by the inverse of the differential of x (dt/dx) so the dt in both equations cancels out and we are left with only x and y. The resulting dy/dx equation is the equation for the gradient of the curve. 

MW
Answered by Mollie W. Maths tutor

4584 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I break down (x-2)/((x+1)(x-1)^2) into partial fractions?


Given y = ln((2x+3)/(7x^3 +1)). Find dy/dx


Find the coordinates of the points where the lines y=x^2-5x+6 and y=x-4 intersect.


The curve C has equation (4x^2-y^3+3^2x)=0. The point P (0,1) lies on C: what is the value of dy/dx at P?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning