How can I find the explicit formula for the inverse of sinh?

Write y = sinh^(-1)(x) ie x = sinhy. Then writing this in terms of exponentials and multiplying by 2 we will get 2x = exp(y) - exp(-y). Multiply by exp(y) and rearrange to obtain exp(2y) - 2xexp(y) -1 = 0. Then this is is simply a quadratic in exp(y), so using the quadratic equation or completing the square we get exp(y) = x + sqrt(x^2 +1). Notice we take the positive square root since we must have exp(y) > 0. Then simply take logs of both sides to get the equation for y in terms of x. This is now the inverse of sinh.

SG
Answered by Stefan G. Further Mathematics tutor

2456 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

solve 3sinh^2(2x) + 11sinh(2x) = 4 for x, giving your answer(s) in terms of the natural log.


Let I(n) = integral from 1 to e of (ln(x)^n)/(x^2) dx where n is a natural number. Firstly find I(0). Show that I(n) = -(1/e) + n*I(n-1). Using this formula find I(1).


Express the complex number (1+i)/(1-i) in the form x+iy


Solve x^2+8x-5=0 using completing the square


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences