show that tan(x)/sec2(x) = (1/2)sin(2x)

tan(x)/sec2(x) Sec(x) = 1/cos(x), therefore 1/sec(x) = cos(x). also tan(x) = sin(x)/cos(x).using substitution, tan(x)/sec2(x) = (sin(x)/cos(x)) * cos2(x) = sin(x)cos(x). sin(x+y) = sin(x)cos(y) + cos(x)sin(y). since 2x = x+x, sin(2x) = 2sin(x)cos(x). therefore, sin(x)cos(x) = (1/2)sin(2x)

Answered by Olaitan O. Maths tutor

4248 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the equation sec^2(A) = 3 - tan(A), for 0<= A <= 360 (degrees)


How do I find the limit of a sequence that is expressed as a fraction?


Integrate 2x/[(x+1)(2x-4)


Express cos(2x) in terms of acos^2(x) + b


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences