Find the values of k for which the equation (2k-3)x^2 - kx + (k-1) = 0

A quadratic equation has two equal roots when its discriminant is equal to 0. Calculating the discriminant of the given equation: D = k2 - 4(k-1)(2k-3) = k2 - 8k2+20k-12 = -7k2+20k-12=0 Solving this equation for k: 7k2-20k+12=0 D = 100-84 = 16 k1,2=(10+-4)/7 => k = 6/7, k=2

KP
Answered by Katerina P. Maths tutor

4729 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the integral of xe^(-2x) between the limits of 0 and 1 with respect to x.


Find the area under the curve with equation y = 5x - 2x^2 - 2, bounded by the x-axis and the points at which the curve reach the x-axis.


x = 2t + 5, y = 3 + 4/t. a) Find dy/dx at (9.5) and b) find y in terms of x.


Where do the graphs of y=3x-2 and y=x^2+4x-8 meet?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning