Find the values of k for which the equation (2k-3)x^2 - kx + (k-1) = 0

A quadratic equation has two equal roots when its discriminant is equal to 0. Calculating the discriminant of the given equation: D = k2 - 4(k-1)(2k-3) = k2 - 8k2+20k-12 = -7k2+20k-12=0 Solving this equation for k: 7k2-20k+12=0 D = 100-84 = 16 k1,2=(10+-4)/7 => k = 6/7, k=2

KP
Answered by Katerina P. Maths tutor

4349 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Q4 on 2017 Edexcel C4 paper, concerns differentiation of multiple variables.


Find the equation of the tangent for x = 2cos (2y +pi)


A curve has equation y = f(x) and passes through the point (4, 22). Given that f ′(x) = 3x^2 – 3x^(1/2) – 7, use integration to find f(x), giving each term in its simplest form.


Differentiate cos(2x^3)/3x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences