How do you differentiate (3x+cos(x))(2+4sin(3x))?

Here we have a product of two things, so we will be using the product rule of differentiation. This is: for y=u(x)v(x), where u(x) and v(x) are funtions of x, dy/dx = u'(x)v(x) + u(x)v'(x). So in this case let u(x) = 3x+cos(x) and let v(x) = 2+4sin(3x). We need to find u'(x). u'(x) = 3-sin(x) as we differentiate u(x). v'(x) = 12cos(3x) as we diferentiate v(x). Then using the product rule sated, dy/dx = (3-sin(x))(2+4sin(3x)) + (3x+cos(x))(12cos(3x)). 

Answered by Jaisal P. Maths tutor

4783 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has the equation y=3x^3 - 7x^2+52. Find the area under the curve between x=2 and the y-axis.


Ignoring air resistance and assuming gravity to equal 9.81. If a ball of mass 1kg is dropped from a height of 100m, calculate it's final velocity before it hits the ground.


A ball is released from rest at a height of 4m. At what speed does it hit the ground?


Integrate the following expression with respect to x by parts: (2*x)*sin(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences