How do you differentiate (3x+cos(x))(2+4sin(3x))?

Here we have a product of two things, so we will be using the product rule of differentiation. This is: for y=u(x)v(x), where u(x) and v(x) are funtions of x, dy/dx = u'(x)v(x) + u(x)v'(x). So in this case let u(x) = 3x+cos(x) and let v(x) = 2+4sin(3x). We need to find u'(x). u'(x) = 3-sin(x) as we differentiate u(x). v'(x) = 12cos(3x) as we diferentiate v(x). Then using the product rule sated, dy/dx = (3-sin(x))(2+4sin(3x)) + (3x+cos(x))(12cos(3x)). 

JP
Answered by Jaisal P. Maths tutor

5678 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How many books and modules and what are they all about?


The General Form of the equation of a circle is x^2 + y^2 + 2gx +2fy + c = 0. Find the centre of the circle and the radius of the circle in terms of g f and c.


Find the indefinite integral of sin(2x)(cos^2(x)) with respect to x.


The line AB has equation 5x+3y+3=0. The line AB is parallel to the line with equation y=mx+7 . Find the value of m.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning