How do you differentiate (3x+cos(x))(2+4sin(3x))?

Here we have a product of two things, so we will be using the product rule of differentiation. This is: for y=u(x)v(x), where u(x) and v(x) are funtions of x, dy/dx = u'(x)v(x) + u(x)v'(x). So in this case let u(x) = 3x+cos(x) and let v(x) = 2+4sin(3x). We need to find u'(x). u'(x) = 3-sin(x) as we differentiate u(x). v'(x) = 12cos(3x) as we diferentiate v(x). Then using the product rule sated, dy/dx = (3-sin(x))(2+4sin(3x)) + (3x+cos(x))(12cos(3x)). 

Answered by Jaisal P. Maths tutor

4734 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation y = e^x + 10sin(4x), find the value of the second derivative of this equation at the point x = pi/4.


dx/dt=-5x/2 t>=0 when x=60 t=0


Prove that 2 cot (2x) + tan(x) == cot (x)


Find the area contained under the curve y =3x^2 - x^3 between 0 and 3


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences