Find y in terms of x for the equation 2x(dy/dx) + 4y = 8x^2

divide through by 2x to get: dy/dx + 2y/x = 4x         this is now in the form of dy/dx + P(x)y = Q(x)

intergrating factor = exp( integral(P(x)) dx ) = exp( integral(2/x) dx ) = exp( 2 ln(x) ) = x2

therefore d( (x2)y )/dx = 4 x3  ->  (x2)y = integral ( 4x^3 ) dx = x4

therefore y = x2

TE
Answered by Tom E. Further Mathematics tutor

7190 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How do I sketch accurate graphs for rational functions in a short amount of time? (I.e. A step by step guide of sketching graphs)


I do not understand this topic and particularly this example. In the class the result was found out but I still do not get it. How did the teacher came up with this outcome?


Particles P and Q move in a plane with constant velocities. At time t = 0 the position vectors of P and Q, relative to a fixed point O in the plane, are (16i - 12j) m and -5i + 4j) m respectively. The velocity of P is (i + 2j) m/s and the velocity of Q


By use of matrices uniquely solve the following system of equations, justifying each step of the calculation: 3x-7y=6, 5y-2x=-3.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning