Q2. Calculate the pH of the solution formed after 50.0 cm^3 of 0.0108 mol/dm^3 aqueous sodium hydroxide are added to beaker B. Give your answer to 2 decimal places

A2.   First thing to work out is the moles of NaOH added, since moles = concentration x volume, = 0.0108 mol/dm^3 x 50ml, but need volume to be in units of Litres to match with the units of dm^3 so the formula becomes 0.0108 mol/dm^3 x (50 x 10^-3)L to give the number of moles of NaOH = 5.4 x 10^-4    Since we know that beaker B also contains 0.0125 mol/dm^3 of nitric acid in 100ml, and so the OH- will react with the H+, we have to account for the number of moles of HNO3    So, (0.0125 x (100 x 10^-3)) - (5.4 x 10^-4) = (moles of H+) - (moles of OH-) = moles of excess H+ = 7.1 x 10^-4   To get [H+] we need to do moles/volume = 7.1 x 10^-4 mol/dm^3 / 150 x 10^-3 L = 4.73 x 10^-3   pH = -log[H+] = 2.32

TD
Answered by Tutor51285 D. Chemistry tutor

13069 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

What is Ionisation Energy and the three factors that affect it? 2)State and explain the general trend in first ionisation energies for the Period 3 elements.


Explain trend in why the ionisation energies increase across the period


Explain the effect of increasing concentraion of O2 on the equilibrium position of this gas phase reaction and what you might see given that Nitrogen Oxide and Nitrogen Dioxide appear colourless and brown respectively. NO + 0.5O2 ----> NO2


In d block chemistry, Copper and Chromium electron configuration do not follow the electron filling trend , why is this?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning