Q3. A third beaker, C, contains 100.0 cm^3 of 0.0125 mol/dm^3 ethanoic acid ( Ka = 1.74 × 10^−5 mol/dm^3 at 25 ºC). Write an expression for Ka and use it to calculate the pH of the ethanoic acid solution in beaker C.

A3.   Ethanoic acid is a weak acid with the formula CH3COOH. It will dissociate into H+ and CH3COO- therefore the expression for Ka is [H+][CH3COO-]/[CH3COOH]   The [H+] = [CH3COO-] and so the expression becomes, Ka = [H+]^2 / [CH3COOH]   We know the Ka value and the [CH3COOH] from the question and so can rearrange the expression to find [H+] and hence the pH   [H+] = sqrt(Ka x [CH3COOH])    Ka = 1.74 x 10^-5 mol/dm^3, [CH3COOH] = 0.0125 mol/dm^3 so [H+] = 4.66 x 10-4   pH = -log[H+] = 3.33

TD
Answered by Tutor51285 D. Chemistry tutor

10347 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

A 20cm³ sample of lithium hydroxide solution of unknown concentration is neutralised by 12.25cm³ of 0.15mol/dm³ of sulfuric acid. Calculate the concentration of the lithium hydroxide solution.


What is hydrogen bonding and why does water have a higher boiling point than methanol?


Describe how a buffer solution based on hydrochloric acid can act as a buffer. (5)


Why is the boiling point of water significantly greater than that of other group 6 (16) hydrides?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning