Find the values of y such that log2(11y-3)-log2(3)-2log2(​y) = 1

Find the values of y such that log2(11y-3)-log23-2log2y = 1

Power law: 2log2y = log2y2

Product law: log2(11y-3) - log23 - log2y2 =  log2(11y-3) - log2(3y2)

Quotient law:  log2(11y-3) - log2(3y2) =  log2(11y-3/3y2)

log2(11y-3/3y2) = 1

So, 11y-3/3y2 = 21 = 2

11y - 3 = 2(3y2) = 6y2

0 = 6y2-11y+3

0 = (3y-1)(2y-3)

y = 1/3 or y = 3/2

Answered by Joe P. Maths tutor

14952 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A spherical balloon of radius r cm has volume Vcm^3 , where V =4/3 * pi * r^3. The balloon is inflated at a constant rate of 10 cm^3 s^-1 . Find the rate of increase of r when r = 8.


If a ball is dropped from 6m above the ground, how long does it take to hit the floor and what is its speed at impact (assuming air resistance is negligible)?


Differentiate e^x^2


Use the substitution u = 6 - x^2 to find the value of the integral of (x^3)/(sqrt(6-x^2)) between the limits of x = 1 and x = 2 (AQA core 3 maths


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences