A stone, of mass m, falls vertically downwards under gravity through still water. At time t, the stone has speed v and it experiences a resistance force of magnitude lmv, where l is a constant.

A stone, of mass m, falls vertically downwards under gravity through still water. At time t, the stone has speed v and it experiences a resistance force of magnitude lmv, where l is a constant.  QUESTION: a. Show dv/dt = g - lv b. If initiail speed of stone is u, find an an expression for v at time, t. ANSWER a. F = ma, and a = dv/dt. So m*dv/dt = mg - mlv. Therefore, dv/dt = g - lv b. On integration, -1/l ln (g-lv) = t + c, Substituting in the boundary conditions, the integration constant is found to be c = -1/l ln(g - lu) So ln (g - lv) = -lt + ln (g-lu) (g - lv)/(g - lu) = e^ -lt g - lv = (g - lu)e^ - lt v = 1/l (g - (g - lu)e^ -lt)

RH
Answered by Ronan H. Maths tutor

4867 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The line AB has equation 5x + 3y + 3 = 0. The line AB is parallel to the line y = mx + 7. Find the value of m.


The line AB has equation 3x + 5y = 7. What is the gradient of AB?


Explain how Differentiation by the chain rule works


Prove n^3 - n is a multiple of 3


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences