A stone, of mass m, falls vertically downwards under gravity through still water. At time t, the stone has speed v and it experiences a resistance force of magnitude lmv, where l is a constant.

A stone, of mass m, falls vertically downwards under gravity through still water. At time t, the stone has speed v and it experiences a resistance force of magnitude lmv, where l is a constant.  QUESTION: a. Show dv/dt = g - lv b. If initiail speed of stone is u, find an an expression for v at time, t. ANSWER a. F = ma, and a = dv/dt. So m*dv/dt = mg - mlv. Therefore, dv/dt = g - lv b. On integration, -1/l ln (g-lv) = t + c, Substituting in the boundary conditions, the integration constant is found to be c = -1/l ln(g - lu) So ln (g - lv) = -lt + ln (g-lu) (g - lv)/(g - lu) = e^ -lt g - lv = (g - lu)e^ - lt v = 1/l (g - (g - lu)e^ -lt)

Answered by Ronan H. Maths tutor

4612 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If 1/(x(a-x)) is equivalent to B(1/x + 1/(a-x)), Express 'B' in terms of 'a'


Express square root of 48 in the form n x square root of 3 , where n is an integer


Differentiate: f(x)=2(sin(2x))^2 with respect to x, and evaluate as a single trigonometric function.


Find the x co-ordinate of stationary point of the graph y=5x^3 +3x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences