Prove that (4x–5)^2 – 5x(3x – 8) is positive for all values of x.

To begin we need to simplify the expression. First we multiply out (4x–5)^2 to get 16x2+40x+25 and then we multiply out 5x(3x – 8) to get 15x2-40x. This makes the whole expression 16x2+40x+25-(15x2-40x), which equals 16x2+40x+25-15x2+40x. This simplifies to x2+25. We know that x2 is positive for all values of x, and so x2+25 must also be positive for all values of x.

Answered by Hannah W. Maths tutor

8878 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Find the interval for which x^2 - 7x + 10 </= 0


gradient and differentiation


a) Solve 6x + 13 =2x +5 (2 marks) b) Expand and simplify (q + 7)(q - 3) (2 Marks)


You have a bag of 60 coloured marbles. 1/10 are red, 3/5 are blue, and the rest are green. How many green ones are there?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences