Consider a differential equation where dx/dt = -axt. Find an equation for x(t).

Starting from dx/dt = -axt.                                We treat dx and dt as infinitessimal factors of x and t, therefore fundemental mathematical operations still apply. Rearranging the equation to group x, dx and t, dt. 1/x dx = -at dt.                               Note: We could rearrange with a on the left handside but since we want to find an equation for x(t) it is convienent to seperate all constants.                             We now have the integral:           S 1/x dx = -a S t dt.                            ln x =-(1/2)at+ c .                       Where c is an integrating constant.                     x(t)=Aexp(-(1/2)at2).                    Define A = exp(c).

Answered by Cal L. Maths tutor

4047 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate x/((1-x^2)^0.5) with respect to x


If y=2x+4x^3+3x^4 and z=(1+x)^2, find dy/dx and dz/dx.


The equation kx^2 + 4x + (5 – k) = 0, where k is a constant, has 2 different real solutions for x. Show that k satisfies k^2-5k+4>0.


Find the first four terms in the binomial expansion of (2 + x) ^5


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences