Consider a differential equation where dx/dt = -axt. Find an equation for x(t).

Starting from dx/dt = -axt.                                We treat dx and dt as infinitessimal factors of x and t, therefore fundemental mathematical operations still apply. Rearranging the equation to group x, dx and t, dt. 1/x dx = -at dt.                               Note: We could rearrange with a on the left handside but since we want to find an equation for x(t) it is convienent to seperate all constants.                             We now have the integral:           S 1/x dx = -a S t dt.                            ln x =-(1/2)at+ c .                       Where c is an integrating constant.                     x(t)=Aexp(-(1/2)at2).                    Define A = exp(c).

Answered by Cal L. Maths tutor

3789 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I find a stationary point on the curve?


Given that y=ln([2x-1/2x=1]^1/2) , show that dy/dx= (1/2x-1)-(1/2x+1)


What are logarithms and how do you manipulate them?


Find the 12th term and the sum of the first 9 terms on the following Arithmetic Progression: a = 2 and d = 3


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences