Consider a differential equation where dx/dt = -axt. Find an equation for x(t).

Starting from dx/dt = -axt.                                We treat dx and dt as infinitessimal factors of x and t, therefore fundemental mathematical operations still apply. Rearranging the equation to group x, dx and t, dt. 1/x dx = -at dt.                               Note: We could rearrange with a on the left handside but since we want to find an equation for x(t) it is convienent to seperate all constants.                             We now have the integral:           S 1/x dx = -a S t dt.                            ln x =-(1/2)at+ c .                       Where c is an integrating constant.                     x(t)=Aexp(-(1/2)at2).                    Define A = exp(c).

Answered by Cal L. Maths tutor

4110 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the Co-ordinates and nature of all stationary points on the curve y=x^3 - 27x, and attempt to sketch the curve


1. The curve C has equation y = 3x^4 – 8x^3 – 3 (a) Find (i) d d y x (ii) d d 2 y x 2 (3) (b) Verify that C has a stationary point when x = 2 (2) (c) Determine the nature of this stationary point, giving a reason for your answer.


Use integration by parts to integrate the following function: x.sin(7x) dx


Solve the simultaneous equations - x+y=2 and 4y^2 - x^2 = 11


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences