Consider a differential equation where dx/dt = -axt. Find an equation for x(t).

Starting from dx/dt = -axt.                                We treat dx and dt as infinitessimal factors of x and t, therefore fundemental mathematical operations still apply. Rearranging the equation to group x, dx and t, dt. 1/x dx = -at dt.                               Note: We could rearrange with a on the left handside but since we want to find an equation for x(t) it is convienent to seperate all constants.                             We now have the integral:           S 1/x dx = -a S t dt.                            ln x =-(1/2)at+ c .                       Where c is an integrating constant.                     x(t)=Aexp(-(1/2)at2).                    Define A = exp(c).

Answered by Cal L. Maths tutor

3934 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you use the chain rule?


integrate (4cos^4 x -4cos^2x+1)^1/2


Find dy/dx if y=(x^3)(e^2x)


If we have a vector 4x + 6y + z and another vector 3x +11y + 2z then what is the angle between the two?Give the answer in radians


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences