An ideal gas undergoes a transformation in which both its pressure and volume double. How many times does the root mean square speed of the gas molecules increase?

In solving this, the ideal gas law must be considered (pV=nRT). Since both the pressure and volume of the gas have doubled, the product p*V (pressure times volume) has increased four times from the initial to the final state. Also, the quantity of gas was not modified during the process, so the only quantity in the right hand side of the state equation that changes is the temperature. Thus, the temperature of the gas must have increased four times for the equation to hold. Finally, the root mean square (rms) speed of the gas molecules can be written in terms of Boltzmann's constant and the mass of a gas molecule (which are constants) multiplied by the square root of the gas' absolute temperature (so the rms speed is directly proportional to the square root of the temperature). Thus, since the temperature of the gas has increased four times, we can conclude that the rms speed has increased by a factor of 4^(1/2), which is 2.

AR
Answered by Andrei R. Physics tutor

3336 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

The mercury atoms in a fluorescent tube are excited and then emit photons in the ultraviolet region of the electromagnetic spectrum. Explain (i) how the mercury atoms become excited and (ii) how the excited atoms emit photons.


An electron is moving with speed 2x10^5ms-1 through a magnetic field of strength 0.5T. If the electrons velocity is perpendicular to the direction of the magnetic field, what is the magnitude of the force felt by the electron?


During take-off from earth, an astronaut of mass 76kg has an area of contact with his seat of 0.095m^2. Calculate the average pressure on the seat when the upward acceleration of the rocket is 47ms^-2


Why the Newton's second law of motion important?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning