An ideal gas undergoes a transformation in which both its pressure and volume double. How many times does the root mean square speed of the gas molecules increase?

In solving this, the ideal gas law must be considered (pV=nRT). Since both the pressure and volume of the gas have doubled, the product p*V (pressure times volume) has increased four times from the initial to the final state. Also, the quantity of gas was not modified during the process, so the only quantity in the right hand side of the state equation that changes is the temperature. Thus, the temperature of the gas must have increased four times for the equation to hold. Finally, the root mean square (rms) speed of the gas molecules can be written in terms of Boltzmann's constant and the mass of a gas molecule (which are constants) multiplied by the square root of the gas' absolute temperature (so the rms speed is directly proportional to the square root of the temperature). Thus, since the temperature of the gas has increased four times, we can conclude that the rms speed has increased by a factor of 4^(1/2), which is 2.

AR
Answered by Andrei R. Physics tutor

3111 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A car is moving along a straight horizontal road, with a constant acceleration. The car passes point A, with a speed of ums(-1). 10 seconds later, passes point B, with a speed of 45 ms(-1). The distance from A to B is 300m. Find u.


Use the kinetic theory of gases to explain why the pressure inside a container increases when the temperature of the air inside it rises. Assume that the volume of the container remains constant.


A ball is thrown at speed u = 10.0 m/s at an angle of 30.0 degrees to the ground at height, s = 0. How far does the ball travel horizontally from its starting position? (Ignore air resistance and taking g = 9.81 m/s^2)


A 1kg spring has an unloaded length 10cm and has an elastic constant of 100N/m. It is compressed to 6cm then placed facing upwards on the floor. When released it travels vertically upwards. How high does it jump? You may assume no energy is lost to heat o


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning