A curve has the equation x^2+2y^2=3x, by differentiating implicitly find dy/dy in terms of x and y.

We shall differentiate each term in the equation with respect to x.

dy/dx (x2) = 2x

dy/dx (2y2) = 4y dy/dx

dy/dx (3x) = 3

So we now have the equation 2x + 4y dy/dx =3

We now have to rearrange to get in the form dy/dx

dy/dx= (3-2x)/4y

Answered by Kate P. Maths tutor

3957 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate x^(4) + x^(1/2) + 3x^(5)


How to differentiate y=2x(x-2)^5 to find dy/dx?


Integrate the function y = 2x^2 + 3x + 8 with respect to x.


The curve C has the equation 4x^2 - y^3 - 4xy + 2y = 0 . The point P with coordinates (-2, 4) lies on C. Find the exact value of dy/dx at the point P.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences