A curve has the equation x^2+2y^2=3x, by differentiating implicitly find dy/dy in terms of x and y.

We shall differentiate each term in the equation with respect to x.

dy/dx (x2) = 2x

dy/dx (2y2) = 4y dy/dx

dy/dx (3x) = 3

So we now have the equation 2x + 4y dy/dx =3

We now have to rearrange to get in the form dy/dx

dy/dx= (3-2x)/4y

KP
Answered by Kate P. Maths tutor

4614 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y=x^2 from first principles


Water is flowing into a rightcircular cone at the rate r (volume of water per unit time). The cone has radius a, altitude b and the vertex or "tip" is pointing downwards. Find the rate at which the surface is rising when the depth of the water is y.


The lines y = 3x² - x + 5/2 intersects the line y = x/2 +7 at two points. Give their coordinates. Show your working


The rate of growth of a population of micro-organisms is modelled by the equation: dP/dt = 3t^2+6t, where P is the population size at time t hours. Given that P=100 at t=1, find P in terms of t.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning