Using the substitution of u=6x+5 find the value of the area under the curve f(x)=(2x-3)(6x+%)^1/2 bounded between x=1 and x=1/2 to 4 decimal places.

dx=du/6 => (u-5)/6=x So the integral is now (2((u-5)/6)-3)(u^1/2) du/6 Which through simplifying becomes (1/36)(2u-28)(u^1/2)du = (1/36)(2u^3/2 -28u^1/2)du After integrating becomes (1/36)(4(u^5/2)/5 -56(u^3/2)/3) Bounded between u=11 and u=8 by the substitution After evaluating we reach our final answer of -2.2889 to 4dp

Answered by Joseph T. Maths tutor

3361 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The triangle ABC is such that AC=8cm, CB=12cm, angle ACB=x radians. The area of triangle ABC = 20cm^2. Show that x=0.430 (3sf)


Find values of y such that: log2(11y–3)–log2(3) –2log2(y) = 1


Via the product rule, or otherwise, differentiate 'y = xsin(x)'.


Integrate (cosx)^3


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences