Identify the stationary points of f(x)=3x^3+2x^2+4 (by finding the first and second derivative) and determine their nature.

f'(x)=9x2​+4x, and f''(x)=18x+4 (derivatives) 

f'(x)=0 at x=0 or x=-4/9

when x=0 f''(x)>0 therefore a minimum value, when x=-4/9 f''(x)<0 and thus a maximum value. 

Answered by Sieff O. Maths tutor

3350 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you integrate the function cos^2(x)


Differentiate y=(x^2+5)^7


Given that dx/dt = (1+2x)*4e^(-2t) and x = 1/2 when t = 0, show that ln[2/(1+2x)] = 8[1 - e^(-2t)]


How do you solve simultaneous questions?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences