Identify the stationary points of f(x)=3x^3+2x^2+4 (by finding the first and second derivative) and determine their nature.

f'(x)=9x2​+4x, and f''(x)=18x+4 (derivatives) 

f'(x)=0 at x=0 or x=-4/9

when x=0 f''(x)>0 therefore a minimum value, when x=-4/9 f''(x)<0 and thus a maximum value. 

Answered by Sieff O. Maths tutor

3493 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

(Using the Quotient Rule) -> Show that the derivative of (cosx)/(sinx) is (-1)/(sinx).


Use chain rule and implicit differentiation to find dy/dx for y^3 = 1 + 3*x^2, then show that they are equal


What exactly IS differentiation?


How do polar coordinate systems work?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences