How to solve the absolute-value inequalities?

Absolute value means how far away you are from zero. It's better to draw a number line to understand and solve the question. 

Given the inequality l 4x+3 l >15 , the distance of the 4x+3 value from 0 must be greater than 15, so 4x+3 has to be either greater than 15 or less than -15 (negative 15). so it becomes

4x+3 > 15 or 4x+3< -15

Then subtract 3 from both sides, 4x >12 or 4x < -18, 

divided by 4 , so the inequalities become x > 3 or x < -9/2 which are the solutions. 

 

 

Answered by Cynthia C. Maths tutor

8174 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has parametric equations x = 1 - cos(t), y = sin(t)sin(2t) for 0 <= t <= pi. Find the coordinates where the curve meets the x-axis.


Prove the property: log_a(x) + log_a(y) = log_a(xy).


Can you show me why the integral of 1/x is the natural log of x?


How do you differentiate y = 5 x^3 + 1/2 x^2 + 3x -4


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences