How to solve the absolute-value inequalities?

Absolute value means how far away you are from zero. It's better to draw a number line to understand and solve the question. 

Given the inequality l 4x+3 l >15 , the distance of the 4x+3 value from 0 must be greater than 15, so 4x+3 has to be either greater than 15 or less than -15 (negative 15). so it becomes

4x+3 > 15 or 4x+3< -15

Then subtract 3 from both sides, 4x >12 or 4x < -18, 

divided by 4 , so the inequalities become x > 3 or x < -9/2 which are the solutions. 

 

 

Answered by Cynthia C. Maths tutor

7881 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A line has an equation y = e^(2x) - 10e^(x) +12x, find dy/dx


The equation of a curve is xy^2= x^2 +1. Find dx/dy in terms of x and y, and hence find the coordinates of the stationary points on the curve.


x^3 + 3x^2 + 2x + 12


Show that the integral of tan(x) is ln|sec(x)| + C where C is a constant.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences