Solve the differential equation: dy/dx = tan^3(x)sec^2(x)

dy/dx = tan3(x)sec2(x)

Integrate both sides ==> ∫dy= ∫ tan3(x)sec2(x) dx

Use the substitution u=tan(x)

And by differentiation du/dx = sec2(x) , which leads to dx = du/sec2(x)

==> and subbing dx into the equation leads to the simplification of y = ∫ u3 du

Integrate with respect to u to get y = u4/4 + c

Then sub u back into the equation to find y = tan4(x) + c

RS
Answered by Ryan S. Maths tutor

12310 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate the function y = 26 + x - 4x³ -½x^(-4)


Consider the functions f and g where f (x) = 3x − 5 and g (x) = x − 2 . (a) Find the inverse function, f^−1 . (b) Given that g^−1(x) = x + 2 , find (g^−1 o f )(x) . (c) Given also that (f^−1 o g)(x) = (x + 3)/3 , solve (f^−1 o g)(x) = (g^−1 o f)(x)


Using the equation cos(a+b) = cos(a)cos(b) - sin(a)sin(b) or otherwise, show that cos(2x) = 2cos^2(x) - 1.


How to translate a function of form y = f(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning