Solve the differential equation: dy/dx = tan^3(x)sec^2(x)

dy/dx = tan3(x)sec2(x)

Integrate both sides ==> ∫dy= ∫ tan3(x)sec2(x) dx

Use the substitution u=tan(x)

And by differentiation du/dx = sec2(x) , which leads to dx = du/sec2(x)

==> and subbing dx into the equation leads to the simplification of y = ∫ u3 du

Integrate with respect to u to get y = u4/4 + c

Then sub u back into the equation to find y = tan4(x) + c

Answered by Ryan S. Maths tutor

11099 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How can you integrate the function (5x - 1)/(x^(3)-x)?


differentiate x^2 + y^3 + xy respect to x


How do i know where a stationary point is and what type of stationary point it is?


Differentiate 5x^2 + 11x + 5 with respect to x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences