Complete the following nuclear equation p+ -----> n + ... + ...

This is a proton decaying into a neutron and two other subatomic particles. Here you have to consider various conservation laws, including: baryon number, lepton number and charge. (Energy and momentum are assumed to be conserved.)  Firstly, baryon number. This is conserved because the baryon number of on the left hand side is 1 (from the proton) and 1 on the right hand side from the neutron.  Secondly charge must be conserved, This is because on the left hand side there is a proton of charge +1 and on the right hand side there is a neutron of charge 0 so there must be another particle on the right hand side to balance the charge. This is a positron, the antiparticle of the electron (e+). Thirdly, lepton number. On the left hand side of the equation it is zero and on the right hand side of the equation it must therefore also be zero. However, we now have a positron on the right hand side meaning the lepton number on the right hand side is -1 (minus because it's an antiparticle). Therefore another particle with a lepton number of +1, charge 0 and baryon number 0 must be added so that all conservation laws are satisfied. This is a neutrino ν.  Therefore the equation is p+ ----> n + e+ + ν

Answered by Ryan S. Physics tutor

3408 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A ball of mass m is thrown from the ground at the speed u=10ms^-1 at an angle of 30 degrees. Find the max height, the total flight time and the max distance it travels?Assume g=10ms^-1 and there is no air friction


A body of mass 2kg is travelling in a straight line along the x-axis. It collides with a second body of mass 3kg which is moving at -2m/s. The two bodies move off together at 3m/s. What is the initial velocity of the first body?


When light above the threshold frequency of a metal is shone on the metal, photoelectrons are emitted. If the power of the light halves, are the maximum kinetic energy of the photoelectrons and/or the number of photoelectrons altered, and if so, how?


Give examples of how the photoelectric effect supports the particle nature of light and defies the wave theory.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences