Integrate x^2sin(x) between -pi and pi

It is possible to solve this question using integration by parts. However, we note that sin(x) is an odd function, meaning that sin(-x) = -sin(x). Thus x2sin(x) is also an odd function. This means that the area under x2sin(x) from 0 to pi is equal to the area under x2sin(x) from -pi to 0. Hence the integral of x2sin(x) between -pi and pi is 0.

Related Further Mathematics A Level answers

All answers ▸

Differentiate w.r.t x the expression arccos(x).


if y = (e^x)^7 find dy/dx


Find the general solution of the second order differential equation: y''+2y'-3 = 0


Solve x^2+8x-5=0 using completing the square


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences