Integrate x^2sin(x) between -pi and pi

It is possible to solve this question using integration by parts. However, we note that sin(x) is an odd function, meaning that sin(-x) = -sin(x). Thus x2sin(x) is also an odd function. This means that the area under x2sin(x) from 0 to pi is equal to the area under x2sin(x) from -pi to 0. Hence the integral of x2sin(x) between -pi and pi is 0.

Related Further Mathematics A Level answers

All answers ▸

Prove by induction that the sum of the first n integers can be written as (1/2)(n)(n+1).


Prove ∑r^3 = 1/4 n^2(n+1)^2


How do you calculate the derivative of cos inverse x?


Given that y = cosh^-1 (x) , Show that y = ln(x+ sqrt(x^2-1))


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences