Integrate x^2sin(x) between -pi and pi

It is possible to solve this question using integration by parts. However, we note that sin(x) is an odd function, meaning that sin(-x) = -sin(x). Thus x2sin(x) is also an odd function. This means that the area under x2sin(x) from 0 to pi is equal to the area under x2sin(x) from -pi to 0. Hence the integral of x2sin(x) between -pi and pi is 0.

HL
Answered by Harry L. Further Mathematics tutor

5469 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

What are differential equations, and why are they important?


Using a Suitable substitution or otherwise, find the differential of y= arctan(sinxcosx), in terms of y and x.


Use De Moivre's Theorem to show that if z = cos(q)+isin(q), then (z^n)+(z^-n) = 2cos(nq) and (z^n)-(z^-n)=2isin(nq).


Integral of ln x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences