Given the function y=(x+1)(x-2)^2 find i) dy/dx ii) Stationary points and determine their nature

Here we have a function made from the product of two functions, so we canuse the product differenciation rule.

y=uv  =>  dy/dx=udv/dx + vdu/dx

Therefore dy/dy=(x-2)^2 + 2(x-2)(x+1)

Stationary points occur when the gradient is zero, we solve for (x-2)^2 + 2(x-2)(x+1)=0 which gives (0,4), (2,0)

Solving for nature of stationary point we find the second derivative d^2y/dx^2=6x-6

When x=0 we get a maximum, when x=2 we get a minimum point.

RB
Answered by Russell B. Maths tutor

4686 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

let p be a polynomial p(x) = x^3+b*x^2+ c*x+24, where b and c are integers. Find a relation between b and c knowing that (x+2) divides p(x).


What is the exact answer to (1^3 + 2^3 + 3^3)^(0.5) ?


How do i solve differential equations?


Differentiate sin(x)*x^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences