Differentiate y=x^3*(x^2+1)

As this is a product of two functions it is necessary to use the product rule for differentiation. Therefore one of the functions must labeled v and the other u. i.e. u=x^3 and v=(x^2+1). It is then necessary to differentiate each of those functions seperately so that du/dx=3x^2 and dv/dx=2x. The final step is to multiply v by du/dx and multiply v by du/dx then add the two together as follows: dy/dx=2x^4+3x^2*(x^2+1)

Answered by Bevan J. Maths tutor

3162 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

differentiate: y=[xcos(x^3)]/[(x^4 + 1)^3] with respect to x


Integrate xlnx with respect to x


Prove, using the product rule that, the derivative of x^{n} is nx^{n-1} where n is a natural number. What if n is an integer or n is rational?


Proof by Induction - "What's the point if we already know the answer?"


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences