Differentiate y=x^3*(x^2+1)

As this is a product of two functions it is necessary to use the product rule for differentiation. Therefore one of the functions must labeled v and the other u. i.e. u=x^3 and v=(x^2+1). It is then necessary to differentiate each of those functions seperately so that du/dx=3x^2 and dv/dx=2x. The final step is to multiply v by du/dx and multiply v by du/dx then add the two together as follows: dy/dx=2x^4+3x^2*(x^2+1)

Answered by Bevan J. Maths tutor

2907 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Let y=arcsin(x-1), 0<=x<=2 (where <= means less than or equal to). Find x in terms of y, and show that dx/dy=cos(y).


Find the gradient of the exponential curve y(x)=(9e^(7x))/(12e^(2x)) at x=2/5


Find the roots of the equation y=x^2-8x+5 by completing the square.


Given y=(1+x^3)^0.5, find dy/dx.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences