A light wave with wavelength 590nm shines upon a metal and causes it to emit an electron with a speed of 5x10^5 m/s. What is the work function of the metal?

The first step for this question is to find out how much energy is absorbed by the electron above its work function. This is found with the kinetic energy equation: K.E.=1/2mv^2 The mass of an electron is 9.1x10^-31. Using this in the above equation finds the kinetic energy to be:          K.E=0.59.1x10^-31(5x10^5)^2= 1.14x10^-19 J The kinetic energy is the energy above the work function. The energy provided from the photon of light is calculated with: E=(h*c)/L where E is the energy, h is the planck constant, c is the speed of light, and L is the wavelength.Inputting the correct values into the above equation gives: E=6.63 x 10^-34 x 3.0 x 10^8 / 5.9 x 10^-7= 3.37x10-19 J Finally, the work function can be found by subtracting the kinetic energy from the energy provided by the photon to give: W.F.= (3.37-1.14)x10^-19= 2.23x10^-19 J

BJ
Answered by Bevan J. Physics tutor

2581 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A projectile is launched from the ground at a speed of 40ms^-1 at an angle of 30 degrees to the horizontal, where does it land? What is the highest point the projectile reaches?


Explain the change of quark character associated with the beta-plus decay and deduce the equation.


Explain how a standing wave is set up on a string fixed at both ends.


What are the assumptions made when calculating values regarding an Ideal Gas?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning