A light wave with wavelength 590nm shines upon a metal and causes it to emit an electron with a speed of 5x10^5 m/s. What is the work function of the metal?

The first step for this question is to find out how much energy is absorbed by the electron above its work function. This is found with the kinetic energy equation: K.E.=1/2mv^2 The mass of an electron is 9.1x10^-31. Using this in the above equation finds the kinetic energy to be:          K.E=0.59.1x10^-31(5x10^5)^2= 1.14x10^-19 J The kinetic energy is the energy above the work function. The energy provided from the photon of light is calculated with: E=(h*c)/L where E is the energy, h is the planck constant, c is the speed of light, and L is the wavelength.Inputting the correct values into the above equation gives: E=6.63 x 10^-34 x 3.0 x 10^8 / 5.9 x 10^-7= 3.37x10-19 J Finally, the work function can be found by subtracting the kinetic energy from the energy provided by the photon to give: W.F.= (3.37-1.14)x10^-19= 2.23x10^-19 J

BJ
Answered by Bevan J. Physics tutor

2473 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Derive an expression for the time taken, (t) for a test mass to fall to the ground from a height (h) in a uniform gravitational field (g = 9.81 ms^-2)


Draw and describe the major points of a typical stress-strain graph for a metal.


Ignoring air resistance, use an energy argument to find the speed of a ball when it hits the ground if it is dropped from 50m, where m is the mass of the ball.


What is the general equation for the alpha-decay of a nucleus X, with nucleon number A and proton number Z, into nucleon Y??


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences