How do you integrate x* (exp(x))??

The easiest method to use in this incidence is integratation by parts.

So let u=x and dv/dx=exp(x). Therefore du/dx=1 and v=exp(x).

Then we use the formula where integral(udu/dx)=uv-integral(v*du/dx).

So integral(xexp(x))=xexp(x)-integral(exp(x)*1)

=x*exp(x)-integral(exp(x))

=x*exp(x)-exp(x)+c

Don't forget the +c

Answered by Harmony J. Maths tutor

9046 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The first term of an infinite geometric series is 48. The ratio of the series is 0.6. (a) Find the third term of the series. (b) Find the sum to infinity. (c) The nth term of the series is u_n. Find the value of the sum from n=4 to infinity of u_n.


find the value of x for when f(x)=0. f(x)=9x^(2)-4


Express the equation cosecθ(3 cos 2θ+7)+11=0 in the form asin^2(θ) + bsin(θ) + c = 0, where a, b and c are constants.


What is greater e^pi or pi^e?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences