The polynomial p(x) is given: p(x)=x^3+2x^2-5x-6, express p(x) as the product of three linear factors

p(x)=x3+2x2-5x-6

      =x(x2+2x-5)-6

      =x(x2+2x+1-6)-6 as we know (x+1)2=x2+2x+1,5 can be expressed 1-6

      =x[(x+1)2-6]-6

      =x(x+1)2-6x-6

      =x(x+1)2-6(x+1)

      =(x+1)[x(x+1)-6]

      =(x+1)(x2+x-6) here, -6 can be expressed as -2*3, and -2+3=1 

      =(x+1)(x+3)(x-2)

 

JB
Answered by Jingyi B. Maths tutor

13962 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the simultaneous equations: x+y =2; x^2 + 2y = 12


Given that y = exp(2x) * (x^2 +1)^(5/2), what is dy/dx when x is 0?


Differentiate: y = sin(2x).


Using the binomial theorem, find the coefficient of x^4*y^5 in (x-2y)^9.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning