The mercury atoms in a fluorescent tube are excited and then emit photons in the ultraviolet region of the electromagnetic spectrum. Explain (i) how the mercury atoms become excited and (ii) how the excited atoms emit photons.

(i) As they pass through the fluorescent tube, they collide with the mercury atoms within it and this collision transfers energy to the atom. This energy transfer allows the atom's orbiting electrons to move to a higher energy state thus exciting the atom. (ii) Shortly after the collision, the atom proceeds to de-excite. The higher-energy electron returns to the ground state and a photon of equal energy to the difference in energy levels the electron travels through is emitted to conserve energy.

EH
Answered by Evan H. Physics tutor

27084 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Describe how a stationary wave is formed and some of its properties.


How does circular motion work?


Explain quantitatively how an object can follow circular motion whilst on a ramp with no friction in the radial direction.


Two people sit opposite each other on the edge of a rotating disk of radius, R, and negligible mass. One person has a mass of 40kg, the other of 50kg. The disk is rotating at 30 revs/min. What is the rotational kinetic energy if R=1.5m?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning