The curve y = 2x^3 - ax^2 + 8x + 2 passes through the point B where x=4. Given that B is a stationary point of the curve, find the value of the constant a.

As B is a stationary point, the value of dy/dx at this point must be equal to 0. Differentiating y gives this to be dy/dx = 6x2-2ax+8. At point Bx=4. This gives the relation 104=8a and thus gives a=13.

EH
Answered by Evan H. Maths tutor

8123 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that the increase in the volume of a cube is given by dV/dt = t^3 + 5 (cm^3/s). The volume of the cube is initially at 5 cm^3. Find the volume of the cube at time t = 4.


Expand the expression (1+3x)^1/3 up to the term x^3.


How to integrate 5x^2?


Given that: 2tanθsinθ = 4 - 3cosθ , show that: 0 = cos²θ - 4cosθ + 2 .


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences