The curve y = 2x^3 - ax^2 + 8x + 2 passes through the point B where x=4. Given that B is a stationary point of the curve, find the value of the constant a.

As B is a stationary point, the value of dy/dx at this point must be equal to 0. Differentiating y gives this to be dy/dx = 6x2-2ax+8. At point Bx=4. This gives the relation 104=8a and thus gives a=13.

Answered by Evan H. Maths tutor

8115 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I integrate sin^2(x)?


https://1drv.ms/w/s!Ajvn5XL_gYTXgaZeAS-K7z62VSxjYw?e=lnAZLx


f(x)=2x^3-7x^2+4x+4, prove that (x-2) is a factor and factorise f(x) completely


Use logarithms to solve the equation 2^(n-3) = 18000, giving your answer correct to 3 significant figures.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences