Where does Euler's Formula come from?

Euler's Formula is: eix = cos(x) + isin(x)

This identity comes from the Maclaurin expansion of the exponential function. The resulting maclaurin series is a power series in x with odd terms having a factor of i. Seperating the odd and even terms, the odd terms give isin(x) and the even terms give cos(x).

Related Further Mathematics A Level answers

All answers ▸

Given the equation x^3-12x^2+ax-48=0 has roots p, 2p and 3p, find p and a.


How do I know when I should be using the Poisson distribution?


Prove by induction that 1^2 + 2^2 + 3^2 + . . . + n^2 = (1/6)n(n+1)(2n+1)


A curve has equation y=(2-x)(1+x)+3, A line passes through the point (2,3) and the curve at a point with x coordinate 2+h. Find the gradient of the line. Then use that answer to find the gradient of the curve at (2,3), stating the value of the gradient


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences