Where does Euler's Formula come from?

Euler's Formula is: eix = cos(x) + isin(x)

This identity comes from the Maclaurin expansion of the exponential function. The resulting maclaurin series is a power series in x with odd terms having a factor of i. Seperating the odd and even terms, the odd terms give isin(x) and the even terms give cos(x).

LK
Answered by Luke K. Further Mathematics tutor

5613 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

The ODE mx'' + cx' + kx = 0 is used to model a damped mass-spring system, where m is the mass, c is the damping constant and k is the spring constant. Describe and explain the behaviour of the system for the cases: (a) c^2>4mk; (b) c^2=4mk; (c) c^2<4mk.


Differentiate arctan(x) with respect to x


Using de Moivre's theorem demonstrate that "sin6x+sin2x(16(sinx)^4-16(sinx)^2+3)"


Prove by mathematical induction that, for all non-negative integers n, 11^(2n) + 25^n + 22 is divisible by 24


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning