Where does Euler's Formula come from?

Euler's Formula is: eix = cos(x) + isin(x)

This identity comes from the Maclaurin expansion of the exponential function. The resulting maclaurin series is a power series in x with odd terms having a factor of i. Seperating the odd and even terms, the odd terms give isin(x) and the even terms give cos(x).

LK
Answered by Luke K. Further Mathematics tutor

5214 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Convert the general complex number z=x+iy to modulus-argument form.


Find the Cartesian equation of a plane containing the points A(1, 7, -2) B(4, -3, 2) and C(7, 8, 9).


For a homogeneous second order differential equation, why does a complex conjugate pair solution (m+in and m-in) to the auxiliary equation result in the complementary function y(x)=e^(mx)(Acos(nx)+Bisin(nx)), where i represents √(-1).


The curve C has parametric equations x=cos(t)+1/2*sin(2t) and y =-(1+sin(t)) for 0<=t<=2π. Find a Cartesian equation for C. Find the volume of the solid of revolution of C about the y-axis.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences