Represent x = 0.0154 recurring as a fraction.

To represent x = 0.0154 recurring as a fraction you need to eliminate the recurring element. You do this by finding the nearest multiple of x with the same recurring decimal element. For example, multiplying x by 10,000 gives 10,000x = 154.0154 recurring. 

x and 10,000x both have the same recurring element so you can eliminate this by subtracting x from 10,000x.

10,000x -x = 9,999x

154.0154 - 0.0154 = 154

So 9,999x = 154

Divide both sides by 9,999 to find x

x = 154/9999

LF
Answered by Lorne F. Maths tutor

4214 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A cylinder has a circular face with a diameter of 10cm, and a body of length 30cm. Calculate the volume of the cylinder.


Richard wants to find out how often people buy crisps, a) name two things that are wrong with his survey question and b) create a better one


How do I find the gradient of a line?


Area of a shaded trapezium within a rectangle involving algebra.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning