Represent x = 0.0154 recurring as a fraction.

To represent x = 0.0154 recurring as a fraction you need to eliminate the recurring element. You do this by finding the nearest multiple of x with the same recurring decimal element. For example, multiplying x by 10,000 gives 10,000x = 154.0154 recurring. 

x and 10,000x both have the same recurring element so you can eliminate this by subtracting x from 10,000x.

10,000x -x = 9,999x

154.0154 - 0.0154 = 154

So 9,999x = 154

Divide both sides by 9,999 to find x

x = 154/9999

LF
Answered by Lorne F. Maths tutor

4133 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Two points P(–4, –1) and Q(–8, 5) are joined by a straight line. Work out the coordinates of the midpoint of the line PQ.


Make a the subject of the following equation, p=(3a+5)/(4-a)


What's the key to solving simultaneous equations?


Find the roots of the following equation x^2 + 6x + 5 = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning