Represent x = 0.0154 recurring as a fraction.

To represent x = 0.0154 recurring as a fraction you need to eliminate the recurring element. You do this by finding the nearest multiple of x with the same recurring decimal element. For example, multiplying x by 10,000 gives 10,000x = 154.0154 recurring. 

x and 10,000x both have the same recurring element so you can eliminate this by subtracting x from 10,000x.

10,000x -x = 9,999x

154.0154 - 0.0154 = 154

So 9,999x = 154

Divide both sides by 9,999 to find x

x = 154/9999

Answered by Lorne F. Maths tutor

3607 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

John has £385 he wants to give to Charlie, Ben and Sarah. He gives them the money in the ratio 1:2:4 respectively. How much money does each person get?


Solve the simultaneous equations: x+y=2 , 4y²-x²=11


A brother and sister share some pocket money together in the ratio of 4:7. The brother receives £18 less than his sister. How much pocket money do the brother and sister get each?


Expand and simplify (x-2)(2x+3)(x+1)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences