Represent x = 0.0154 recurring as a fraction.

To represent x = 0.0154 recurring as a fraction you need to eliminate the recurring element. You do this by finding the nearest multiple of x with the same recurring decimal element. For example, multiplying x by 10,000 gives 10,000x = 154.0154 recurring. 

x and 10,000x both have the same recurring element so you can eliminate this by subtracting x from 10,000x.

10,000x -x = 9,999x

154.0154 - 0.0154 = 154

So 9,999x = 154

Divide both sides by 9,999 to find x

x = 154/9999

LF
Answered by Lorne F. Maths tutor

4226 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Expand and simplify 3 (y + 4) - 2 (4y + 1)


A fridge of height 2m and width 0.8m is tilted in a delivery van so that one edge rests on the edge of a table and another touches the ceiling, as shown in the diagram. The total height of the inside of the van is 1.5m. Find the height of the table.


i) Make y the subject of the expression x = ((a-y)/b))^1/2 ii) Simplify fully (2x^2 − 8)/(4x^2 − 8x)


Write 16 × 8^2x as a power of 2 in terms of x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning