Represent x = 0.0154 recurring as a fraction.

To represent x = 0.0154 recurring as a fraction you need to eliminate the recurring element. You do this by finding the nearest multiple of x with the same recurring decimal element. For example, multiplying x by 10,000 gives 10,000x = 154.0154 recurring. 

x and 10,000x both have the same recurring element so you can eliminate this by subtracting x from 10,000x.

10,000x -x = 9,999x

154.0154 - 0.0154 = 154

So 9,999x = 154

Divide both sides by 9,999 to find x

x = 154/9999

LF
Answered by Lorne F. Maths tutor

4191 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A football pitch has a length of the xm. Its width is 25m shorter than the length. The area of the pitch is 2200m2. Show that x2 - 25x - 2200 =0 and work out the length of the football pitch.


How do I expand a factorised equation?


(8/125)^(-2/3)


There are 3 red beads and 1 blue bead in a jar. A bead is taken at random from the jar. what is the probability that the bead is blue?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning