Find integers A and B, such that (5x +4)/((2-x)(1+3x)) = A/(2-x) + B/(1+3x)

Adding the fractions on the RHS of the equation in the usual way gives 

A/(2-x) + B/(1+3x) = (A(1+3X) +B(2-X))/((2-X)(1+3X)) = (5x +4)/((2-x)(1+3x)) 

This gives an expression for the original numerator in terms of A B and x. 

A(1+3X) +B(2-X)) = 5x +4

Take values of x which simplify the equation e.g x = 2, -1/3

Gives A = 2, B = 1

So (5x +4)/((2-x)(1+3x)) = 2/(2-x) + 1/(1+3x)

LF
Answered by Lorne F. Maths tutor

5675 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How would I sketch the graph sin(x) + sin(2x - π/2) in my exam?


Integrate Cos^2(x)


Find 1 + (1 + (1 + (1 + (1 + ...)^-1)^-1)^-1)^-1


Find the general solution of the differential equation: d^2x/dt^2 + 5dx/dt + 6x = 2cos(t) - sin(t)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning